TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced β-catenin/TCF-4 transcription.
نویسندگان
چکیده
Background The translationally controlled tumor protein (TCTP) is a multifunctional protein that plays important roles in immune responses, cell proliferation, tumorigenicity and cell apoptosis. Here, we examined the clinical value of TCTP in glioma patient survival and investigated the functional roles and mechanism of TCTP in glioma development. Methods TCTP expression was determined through immunohistochemical staining, immunoblotting, and quantitative real-time PCR (qRT-PCR). TCTP or TCF-4 expression was silenced using short hairpin (sh) RNA. In vitro cell proliferation was detected using MTT, BrdU and colony formation assays, and in vivo tumor growth was performed using the xenograft model. TCTP/TCF-4/β-catenin association was detected using a co-immunoprecipitation (co-IP) assay. TCF-4 transcription activity was detected using a TOPflash/FOPflash report gene assay. Wnt/β-catenin-targeted gene expression was detected through Western blotting. Results TCTP protein levels were significantly elevated in high-grade gliomas compared with low-grade gliomas and normal brain tissues. Importantly, the expression of TCTP was significantly associated with poorer overall survival and disease-free survival, and TCTP also reduced the survival rate after treatment with radiotherapy and temozolomide (RT-TMZ) for glioma patients. The ectopic expression of TCTP enhanced glioma cell proliferation both in vitro and in vivo, whereas the knockdown of TCTP inhibited this effect. Similarly, the overexpression of TCTP increased β-catenin binding to TCF-4, TOPflash report gene transcription activity, and the expression of Wnt/β-catenin signaling target genes including c-Myc and cyclin D1; notably, the knockdown of TCTP reduced these effects. The knockdown of TCF-4 using shRNA rescued the enhanced cell proliferation induced by the overexpression of TCTP. Conclusion TCTP is associated with reduced survival of glioma patients and induces glioma tumor growth through enhanced Wnt/β-catenin signaling.
منابع مشابه
Norcantharidin blocks Wnt/β-catenin signaling via promoter demethylation of WIF-1 in glioma.
Glioma is one of the most common primary intracranial tumors, and the prognosis is poor even though much treatment management is employed. Wnt/β-catenin signaling has been reported to be associated with glioma. Norcantharidin (NCTD) is the demethylated analog of cantharidin isolated from blister beetles, and it is reported to possess anticancer activity but less nephrotoxicity than cantharidin....
متن کاملβ-catenin-mediated YAP signaling promotes human glioma growth
BACKGROUND Hippo/YAP pathway is known to be important for development, growth and organogenesis, and dysregulation of this pathway leads to tumor progression.We and others find that YAP is up-regulated in human gliomas and associated with worse prognosis of patients. However, the role and mechanism of YAP in glioma progression is largely unknown. METHODS The expression of YAP in glioma tissue...
متن کاملKindlin-2 interacts with β-catenin and YB-1 to enhance EGFR transcription during glioma progression
Kindlin-2 promotes carcinogenesis through regulation of cell-cell and cell-extracellular matrix adhesion. However, the role of Kindlin-2 in glioma has not been elucidated. We investigated Kindlin-2 expression in 188 human glioma tissue samples. High Kindlin-2 expression was correlated with high pathological grade and a worse prognosis. Kindlin-2 promoted glioma cell motility and proliferation b...
متن کاملβ-catenin/Tcf-4 complex transcriptionally regulates AKT1 in glioma.
Increasing evidence suggests that interplays between Wnt/β-catenin and PI3K/AKT signaling cascades are involved in tumor development and progression. However, the exact mechanism in glioma is not well known. Using aspirin, we found that the expression levels of AKT1 in glioma cells significantly correlated with the transcriptional activity of β-catenin. Similar observations were made when we su...
متن کاملAntitumor effect of aspirin in glioblastoma cells by modulation of β-catenin/T-cell factor-mediated transcriptional activity.
OBJECT The goal in this study was to investigate the antitumor effect of aspirin in glioblastoma cells and the molecular mechanism involved in its antineoplastic activities. METHODS The authors used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, flow cytometry, the annexin V method, and Transwell cell invasion test to detect the proliferation and invasive activity of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-oncology
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2014